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Abstract. We have studied the structural and spectral properties of the classical system
consisting of a finite number of charged particles, moving in two dimensions (2D), and interacting
through a screened Coulomb potential and held together by an anisotropic harmonic potential. It
is known that for the bare Coulomb interaction, the system crystallizes in well defined ordered
configurations in which the particles are distributed in shells. However, we have found that the
occupation of the shells changes considerably as a function of the screening parameter, and for
large screening, the shell structure disappears and the particles form a Wigner lattice. We have
shown that the eigenmodes of the system stiffen with increasing screening. By increasing the
anisotropy of the confining potential, we were able to drive the system from 2D to 1D; this
change occurs through a series of structural transitions. These transitions are reflected in the
mode spectrum which collapses into a narrower frequency region with increasing anisotropy.

1. Introduction

There has recently been growing interest in studying clusters of a finite number of interacting
particles subjected to an external confinement potential. Electrons confined in semiconductor
quantum dots [1], plasmas of electrons and ions in radio-frequency traps [2], a high density
of a cold ionic system in storage rings [3], electrons or ions trapped near the superfluid
helium interfaces [4], strongly coupled dusty plasmas [5], and polymer colloids confined
between glass plates [6] are examples of different trap configurations. For charged particles
and isotropic parabolic confinement, the model describing the system is similar to the
Thomson classical model of an atom [7]. A shell structure is obtained and it is possible to
build up a Mendeleev table for both two- and three-dimensional atoms [8, 9]. Order–disorder
transitions for phases corresponding to inter-shell rotation and inter-shell diffusion in two-
dimensional (2D) charged systems were found and the excitation spectrum was evaluated
[10]. These studies were recently extended to analyse configurations of artificial molecules
formed by double-layer atoms [11].

Most of the previous studies have been performed by considering the bare Coulomb
interaction among the particles. However, the 2D Yukawa system has been used as a
simple model for charged colloidal suspensions [12, 13]. On the other hand, in the case
of anisotropic 3D confinement, which usually occurs in traps, novel configurations and
different structural phase transitions can be found as a function of the number of particles
as well as the anisotropy of the confining potential [14].
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In this paper, we consider a cluster of classical particles, moving in 2D, and interacting
with each other through the Yukawa potential and subject to an anisotropic parabolic
potential. The purpose of the present investigation is to analyse in detail the shape and
internal structure of the clusters and how changes in these configurations occur as both the
screening parameter of the Yukawa interaction potential and the anisotropy parameter of the
confinement potential are varied.

The paper is organized as follows. In section 2 we describe the model and our
numerical approach. In section 3 the structural and dynamical properties of the system
are discussed. We analyse how the stable-state configurations, vibrational density of states,
and the excitation spectrum are influenced by the screening. We observe a new structural
transition, for a fixed number of particles, from a shell structure at small values of the
screening constant to a Wigner lattice-like cluster for strong screening. In section 4 we
discuss the influence of the anisotropy of the confinement potential on the stable-state
configurations and the normal-mode excitation spectrum of Coulomb clusters. Different
structural phase transitions are found with increasing anisotropy. Finally, in section 5
we present the role of the screening potential in the structural transitions induced by the
anisotropy of the confinement potential, and we summarize our results and present our
conclusions. We think that the experiments on dusty plasmas [5] and colloidal particles
[6] are good candidates as regards seeing the effects that we predict in this work. In these
systems, the plasma of charged particles adjusts self-consistently to provide shielding, and
can be modelled by a screened Coulomb potential.

2. The model and the numerical approach

Our model consists of a 2D classical system consisting of a finite number(N) of particles
with identical charge(Ze) moving in a medium with dielectric constantε and interacting
through a repulsive screened Coulomb (i.e. Yukawa) inter-particle potential. A confinement
potential keeps the particles together; it is taken to be harmonic. The potential energy of
the system is given by

V =
N∑
i=1

1

2
mω0

2(xi
2+ αyi2)+ (Ze)

2

ε

N∑
j>i=1

exp(−|ri − rj |/λ)
|ri − rj | (1)

wherem is the mass of the particles with position coordinatesri = (xi, yi), ω0 the strength
of the confinement potential which, for generality, is taken anisotropic with anisotropy
parameterα, andλ is the screening length, which we assume to be constant. Hence, it is
more a measure of the range of the potential than a genuine screening length. In order to
make clear the effective number of parameters that the system depends on, we introduce
the following dimensionless units [8]:r0 = (Z2e2/εγ )1/3 for the unit of length where
γ = mω2

0/2, E0 = γ r2
0 for the unit of energy, andτ = √2/ω0 as the unit of time. The

dimensionless potential energy becomes

V =
N∑
i=1

(xi
2+ αyi2)+

N∑
j>i=1

exp(−κ|ri − rj |)
|ri − rj | (2)

whereκ = r0/λ is the dimensionless inverse screening length, which is a measure of the
range of the inter-particle interaction. Note that the stable-state configuration will depend
on the following three parameters:(1) N : the number of particles;(2) α: the anisotropy
of the confinement potential; and(3) κ: the inverse screening length. In references [8, 9],
the parameter space(N, α, κ) = (N, 1, 0) was studied, which is the region of classical
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Coulomb clusters in a symmetric parabolic confinement potential. Here we extend these
previous studies to the full(N, α, κ) parameter region.

In order to find the stable-state configuration of the system and to study the dynamics,
we have used the technique of molecular dynamics (MD) simulation. The MD simulations
were carried out using the procedure outlined by Hasse and Schiffer [15]. We started with
a random distribution of particles at high temperature, aroundT0 = E0/kB , and followed
the time evolution with time steps in the range1t = (0.005–0.01)τ depending onN and
κ. Afterwards, the system was cooled down by successively decreasing the temperature
by 20% after each 501t until the temperature reachedT ∼ 10−20T0. In order to obtain
the stable state of the system, different initial distributions were taken in order to ascertain
that the stable state was reached. The physical quantities are obtained by averaging over
5×104 1t after the system was thermalized, which was taken to have occurred after a time
t = 105 1t .

3. The dependence on the screening

In this section, we limit ourselves to considering an isotropic confinement potential, i.e. with
α = 1, and investigate the stable-state configuration as function of the screening constantκ

and the number of particlesN in the cluster. First we consider the stable-state configuration
and the respective energy. Next, the spectrum, i.e. the normal modes, and the velocity
correlation function are investigated.

3.1. The structure of the minimum-energy configurations

In the absence of screening, i.e. forκ = 0, previous studies [8, 16, 9] have shown that the
particles arrange themselves in rings (also called shells). The number of particles on each
ring and the number of rings depend onN and were catalogued into a Mendeleev type of
table [8, 9]. For small values ofκ we still recover this ring structure; the population of
each ring can be a function ofκ, but for sufficiently large screening the particles arrange
themselves into a finite triangular Wigner crystal.

This behaviour is illustrated in figure 1 forN = 30 particles and for different values
of κ. For clarity we added circles in order to accentuate the shell structure. Note that each
shell has a finite width and the radial positions in each of the rings are not exactly the
same. Notice that forκ = 0 we recover the(5, 10, 15) configuration as had already been
discovered in reference [8] for a Coulomb system. On increasing the screening, we find that
for κ = 1 the shell structure(5, 11, 14) becomes the stable state, and forκ = 5 it becomes
(1, 6, 11, 12). On increasing the screening beyondκ = 5, the system transforms into a
Wigner lattice. For very largeκ, the screened interaction becomes extremely short ranged,
and the particles ‘prefer’ to locate nearr ≈ 0, where the confinement vanishes, and, as a
result, the system becomes similar to the 2D Wigner solid with hexagonal symmetry. Notice
that recently [8, 9, 17] it was shown that the functional form of the circular confinement
potential may also influence the shell structure, i.e. the detailed distribution of the particles
over the different rings.

The difference between these different states can be made more quantitative by
considering the bond-angle distributionf (θ), which is plotted in figure 2 for the previous
system withN = 30. The bond-angle distribution is obtained from our MD simulation
as follows: first a list of alli nearest-neighbour electrons around a fixed electronO is
constructed using a cut-off distance which is given by the position of the first minimum
in giO(r). From this list, the angles6 i–O–i are calculated for alli nearest-neighbour
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Figure 1. Evolution of the minimum stable configuration for the cluster ofN = 30 particles
for different values of the screening parameterκ = 0, 1, 2.5, 5, 10, 40. Note that thex- and
y-scales shrink asκ increases.
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Figure 2. The distribution of the bond angles for
N = 30 particles andκ = 0, 1, 5, 40.

Figure 3. The radial distribution for a system consisting
of N = 30 particles forκ = 0, 1, 5, 40.

electrons. The histogram in figure 2 is then made up of averages over all angles obtained
involving all electrons at positionO in the stable-state configuration. We clearly see that
with increasingκ the bond angles start to group increasingly near 60, and integer multiples
of it, indicating an increased tendency towards forming a triangular Wigner lattice.

The ring structure is more clearly investigated by considering the radial distribution
function, which is shown in figure 3 for theN = 30 system. After the system was
thermalized, the time evolution of the radial positions of the particles was followed over a
time interval 50001t from which we obtain a time-averaged radial distribution function
ρ(r) at T = 10−20T0. From figure 3, we clearly observe the changes in the electron density
in the different rings as a function ofκ, which is a consequence of the redistribution of the
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Figure 4. The (N, κ) phase diagram.

Figure 5. The screening constant dependence of the minimum energy of the stable state scaled
with respect toN5/3 for different cluster sizes.

particles over different rings with increasingκ. Notice that, on increasingκ, the system
becomes increasingly dense due to the decreasing repulsion between the particles.

The transition of the system from the shell structure to the Wigner lattice is summarized
in the phase diagram shown in figure 4. The phase diagram is determined from a direct
analysis ofρ(r) andf (θ). The numerical results are indicated by the symbols and the dashed
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Figure 6. The vibrational density of statesG(ω) for κ = 0, 10, 90, andT = 10−7T0, for a
cluster withN = 9 particles.

line is the functionN = 370κ−0.72 which was obtained through a fit of our numerical results.
The error bars in figure 4 are an indication that the transition is not abrupt, but occurs over
a finite width. Note that, with increasingN , the lattice state is reached for smaller values
of the screening constant. This is not surprising because for largeN -values it was already
found [8] that, for a Coulomb system of particles, the inner part of the cluster is arranged
into a Wigner lattice and the shell structure is only found near the edge of the cluster.
Thus, on increasingN , a larger part of the particles in the cluster are already arranged into
a Wigner lattice configuration and consequently it requires only a much smaller softening
of the inter-particle potential in order to induce the transition of the total system into the
Wigner lattice state.

3.2. The minimum energy of the equilibrium state

The lowest energy of the stable state as a function of the screening parameterκ is shown in
figure 5. For the Coulomb system it has been shown [18] that for largeN the energy behaves
like E ∼ N5/3. So, we show the dependence of the stable-state energy, scaled with respect
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Figure 7. The excitation spectrum as a function ofκ corresponding to the peaks ofG(ω) for
N = 9 andT = 10−7T0. The inset shows the small-κ region where the solid line gives the
frequency for the centre-of-mass motion and the dashed curve is the breathing mode.

to N5/3, on the screening parameterκ for several cluster sizes. We clearly observe that our
results reproduce the general power law in the case of pure Coulomb interaction but that
this is less so for increasingκ. Note also that the equilibrium-state energy decreases with
increasing screening which is a consequence of the decreasing range of the inter-particle
interaction.

3.3. Dynamical properties

From the MD simulation, we obtain the time evolution of the position and the velocity of
the different particles in the system from which we can calculate the different correlation
functions. Here, we will concentrate on the velocity–velocity correlation function and
investigate its dependence on the screening parameter. The normalized velocity auto-
correlation function is defined as follows:

Z(t) = 〈vi (t) · vi (0)〉〈vi (0)〉2 (3)

wherevi (t) is the velocity of the particlei at time t , and the average〈· · ·〉 denotes an
equilibrium ensemble average over the particles. The Fourier transform of this function

G(ω) =
∫ ∞

0
dt eiωtZ(t) (4)
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Figure 8. The frequency of the breathing mode as a function ofκ for small-size clusters with
N = 2, 3, 5, 9. The inset enlarges the small-κ region.

reflects the vibrational density of states of the system and consequently the normal-mode
frequencies, or equivalently the energy spectrum [20].

In figure 6, the Fourier transform of the velocity auto-correlation function is shown for
a system consisting ofN = 9 particles around zero temperature(we took T = 10−7T0)

and for three values of the screening parameter:κ = 0, 10, 90. Theκ = 0 result agrees
with the one found in reference [20] where the dynamics of a finite system of interacting
Coulomb particles was investigated. The motion of particles was considered with respect
to the centre-of-mass motion and consequently the mode with frequencyω = ω0 does not
appear in the velocity auto-correlation function. Notice that with increasing screening the
peaks in the spectrum are shifted to larger frequencies, i.e. the system becomes stiffer. This
behaviour is summarized in figure 7, where we show the position of the different peaks
in G(ω) as a function of the screening parameterκ for N = 9. There is a monotonic
increase of the different frequencies withκ. In the inset of figure 7, we show the small-κ

behaviour, from which we notice that the different eigenfrequencies exhibit a linear increase
with κ. This behaviour can be understood from the functional behaviour of the inter-particle
interaction. The squares of the eigenfrequencies are, in essence, determined by the second
derivative of the inter-particle potential

V ′′(r) = (2+ 2κr + (κr)3)(e−κr/r3).

When we approximate the inter-particle distance by its average value〈r〉, we expect that,
in a crude approximation, theκ-functional behaviour of the eigenfrequencies should be
given byω ≈ [V ′′(〈r〉)]1/2. The average nearest-neighbour inter-particle distance〈r〉 was
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Figure 9. The configuration of theN = 50 cluster for different values of the anisotropy
parameter: (a)α = 1, (b) α = 0.7, (c) α = 0.5, (d) α = 0.3, (e) α = 0.2, (f ) α = 0.1,
(g) α = 0.025, (h)α = 0.01. Note that thex- andy-scales are changed asα varies.

determined as the closest distance of the first ring, as can be seen in figure 3. Following
this approach we obtain that in the small-κ region the frequencyω increases linearly with
κ and that the small-κ behaviour of the frequency could be fitted to

ω(κ)/ω(0) = 4.94+ 1.44κ + 0.01κ2

for N = 9. The previous normal-mode analysis of reference [20] for Coulomb systems
showed that the spectrum exhibited three frequencies (in units ofω0/

√
2) which are

independent of the number of particles: (i)ω = 0: due to the uniform rotation of the
system; (ii)ω = √2: due to the centre-of-mass motion of the whole system (ω = ω0 in real
units); and (iii)ω = √6: the breathing mode. For the present screened Coulomb system,
the centre-of-mass motion is still independent ofN and κ due to the generalized Kohn
theorem [21] which is valid for parabolic confinement independently of the functional form
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Figure 9. (Continued)

of the inter-particle potential. The frequency of the breathing mode, on the other hand,
depends onκ, and forκ 6= 0 depends also onN . This is illustrated in figure 8, where we
show the frequency of the breathing mode as a function of the screening constantκ for
N = 2, 3, 5, 9.

4. Anisotropic confinement of Coulomb clusters

Next we turn our attention to the effect of the symmetry of the confinement potential on
the stable-state configuration of the cluster. In order to limit the number of parameters,
we consider first the Coulombic inter-particle interaction, i.e.κ = 0. In references [8]
and [9], the effect of the functional form of the confinement potential, the hard wall [8]
and a generalrn-potential [9], was considered. But the confinement potential had still
circular symmetry. By changingα in equation (1), we can go from a circular potential
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Figure 10. The maximum distance between two particles in thex-direction as a function of the
anisotropy parameter in theN = 50 cluster. The distance is scaled with respect to the mean
nearest-neighbour distance〈a0〉.

(α = 1) to a 1D system (α = 0), when the confining force along one axis is strongly
reduced.

4.1. The structure of the equilibrium-state configuration

The positions of the particles for a system ofN = 50 particles are depicted in figure 9
for different values of the anisotropy parameter: (a)α = 1.0, (b) α = 0.7, (c) α = 0.5,
(d) α = 0.3, etc. Note that, for the isotropic case (α = 1), the shell structure is recovered
with the following occupation of the different rings:(4, 10, 16, 20), which agrees with the
one found in reference [8]. On decreasingα, this ring structure becomes deformed due to the
increasingly elliptic shape of the confinement potential. Forα near 1 (see figure 9(b)), there
is only a continuous plastic deformation of circular to elliptical rings, which are nothing
else than the equipotential lines of the confinement potential. On decreasingα further, we
found that there are structural transitions in which the stable-state configuration changes in a
discontinuous manner. For example, on going fromα = 0.7 (figure 9(b)) toα = 0.5 (figure
9(c)), the inner ellipse collapses into a line and, at the same time, there is a redistribution
of the particles between the different elliptical rings. Still decreasingα, the central line
of particles disappears (see figure 9(d)) and the particles redistribute themselves over the
three elliptical rings. This scenario repeats itself when we decreaseα further. Following
reference [14], we analysed these transitions in a more quantitative way by calculating
the ratiodmax/〈a0〉 for electrons in the configuration. The maximum distancedmax between
electrons in thex-direction is defined by the position of the last one of the three peaks of the
pair-correlation function along thex-axis. This quantity is scaled with respect to〈a0〉, which
is the smallest distance between two particles in the cluster, and defined as the position of
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Figure 11. As figure 10, but now only the small-α region is considered for (a)N = 50,
(b) N = 70, and (c)N = 100.

the first peak in the total pair-correlation function. The normalized distancedmax/〈a0〉 is
plotted in figure 10, which shows clear discontinuous behaviour at seven different values
of α. The differences between the different configurations are apparent from figure 10
where, asα varies, we notice, in the centre of the cluster, periodic alternations of a line of
particles and particles arranged on an ellipse. With decreasingα, the width of the cluster
along thex-direction decreases until we arrive at a line arrangement of particles in the
y-direction forα < 0.025. Increasingα beyond this value results in a zigzag transition for
the particles in the centre of the line. This is similar to what was found in reference [19]
for a ring confinement potential, but with the essential difference that in the latter case all
particles take part in the zigzag transition and this transition occurs with increasing number
of particles, while here it occurs with decreasing anisotropy of the confinement potential
and initially only the central particles in the line take part in the zigzag transition.

The dependence of the zigzag transition on the number of particles is illustrated in
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Figure 12. The value of the anisotropy parameter at which the first zigzag transition occurs
as a function of the number of particles in the cluster. The symbols are the results from our
simulations and the line is a power-law fit.

figure 11. Notice that with increasingN , the different transitions move towards smaller
values ofα, i.e. larger anisotropy, but thedmax/〈a0〉 value at the transitions practically does
not depend onN . Furthermore, the general shape of the curves is independent ofN . The
position of the first zigzag transition is plotted in figure 12 as a function of the number of
particles in the cluster. The decrease ofα with increasingN is a consequence of a stronger
potential in they-direction. Since, on increasingN , more particles are pushed away from
the y = 0 centre, which increases the potential energy of the system, then consequently
the zigzag transition will occur for a much smaller confinement potential in they-direction,
i.e. for smallerα-values. The dashed line in figure 12 is a power-law fit to the numerically
calculated values (indicated by symbols):αtr = cNβ , where we foundβ = 1.82 and
c = 3.23. Note that this power-law behaviour is similar to the one found for the zigzag
transition in a confined 3D ionic anisotropic system [14], but with different values forβ

andc.

4.2. The minimum energy of the equilibrium state

The lowest energy of the stable state per particle as a function of the anisotropy parameter
is shown in figure 13 for three different cluster sizes:N = 50, 70, and 100. Forα = 1,
we recover the results of reference [8]. Note that the energy is a smooth function of
α, and no effects due to the transitions shown in figures 10 and 11 are visible. On
increasing the anisotropy, the energy per particle decreases because the number of nearest
neighbours decreases (see e.g. figure 9) which are responsible for the largest contribution
to the interaction energy.

The energy per particle is an increasing function of the number of particles but increases
less than linearly inN. The energy followed approximately anE ∼ N5/3 behaviour. The
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Figure 13. The lowest energy of the equilibrium configuration as a function of the anisotropy
parameter for clusters withN = 50, 70, and 100 particles. The symbols show our results and
the curves are power-law fits.

α-dependence could be well fitted (dashed curves in figure 13) toE/N = a + bα1/2 + cα
with {a = 2.64; b = 25.88; c = −12.83} for N = 50, {a = 3.62; b = 31.85; c = −15.39}
for N = 70, and{a = 5.65; b = 38.22; c = −17.88} for N = 100.

4.3. Dynamical properties

The normal-mode spectrum was again obtained from the peak positions in the Fourier
transformed velocity auto-correlation function. The spectrum for a system ofN = 9
particles is shown in figure 14 as a function of the anisotropy parameter. Note that for
α 6= 1, the rotational mode, which forα = 1 has the frequencyω = 0, now attains a nonzero
value due to the loss of circular symmetry. Its frequency increases with decreasingα. As
a consequence, the lower bound of the normal-mode spectrum increases asα decreases.
The frequency of the centre of mass motion is still independent of the number of particles
in the system, as was shown in reference [21], but is now different for motion along the
x-direction (ω = ω0) and for motion along they-direction (ω = √αω0). These frequencies
are shown by the dashed curves in figure 14. The breathing mode which was present in
the circular symmetric system and has frequencyω = √3ω0 becomes a function of the
anisotropy parameterα and evolves into a more complicated normal mode of the system.
Note also that the maximum frequency of the spectrum deceases with decreasingα which
is a consequence of the overall softening of the confinement potential and the increased
extent of the system (see figure 9).
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Figure 14. The mode spectrum as a function of the anisotropy parameter for a cluster ofN = 9
particles. The vertical lines indicate the structural transitions for different configurations which
are shown in the insets.

The configurations of theN = 9 system are given as insets in figure 14. We observe
that the spectrum changes discontinuously forα = 0.33, and 0.57, where the structure
of the stable state changes abruptly. Atα ≈ 0.4, a plastic deformation occurs in the
cluster, but without any drastic change in the configuration. Consequently, in contrast
to the behaviour of the minimum energy of the stable state, the structural transitions are
reflected in the spectrum of normal modes. Thus, the normal modes are more sensitive to
the exact configurations of the system than the stable-state energy.

5. Summary and conclusions

For the sake of completeness, we have also studied the influence of the screening constant
of the Yukawa potential on the structural transitions driven by the anisotropic confinement.
In figure 15, we depict the maximum distance between two electrons in theN = 50 cluster
as a function of the anisotropy parameter to show the influence of the screening potential
on the first transition, as displayed in figure 10. We observe a shift of the transition point
to lower values ofα with increasingκ. But, on increasingκ, beyondκ = 5 we do not
see any significant changes in the critical value ofα. This behaviour can be understood as
follows. Increasing the screening brings the particles closer together and as a consequence
the influence of the confinement potential on the stable-state configuration is diminished. As
a result, larger anisotropies are needed, i.e. smallerα-values, in order to drive the stable-state
configuration into a single line.
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Figure 15. The maximum distance between two particles in thex-direction as a function of the
anisotropy parameter around the first structural transition, as plotted in figure 10, for different
values of the screening constant.

In summary, the stable-state configuration and the dynamics of a 2D classical system
of charged particles confined by a harmonic oscillator potential were investigated. The
dependence of the stable state on the number of particles (N ), the screening of the inter-
particle potential (κ), and the anisotropy (α) of the confinement potential was studied in
detail. As function ofα and κ, different structural transitions were found. On increasing
the screening, i.e. making the inter-particle interaction potential more short ranged, the
distribution of the particles over the different shells is altered and, in the limit of large
screening, the particles form a Wigner lattice at the bottom of the confinement potential.

The effect of the anisotropy was investigated in detail for the case of particles interacting
through a bare Coulomb potential. Making the system more anisotropic, the circular shells
are deformed into ellipses and the number of shells decreases; this occurs through a number
of structural phase transitions at which the inner shell collapses into a line. In the limit of
extreme anisotropy of the confinement potential, a 1D configuration of particles is found.

Bothα andκ strongly influence the frequency of the modes of the system. The increase
of the screening allows the particles to be closer to each other which leads to a substantial
increase of the normal-mode frequencies. On the other hand, increasing the anisotropy of
the system contracts the spectrum into a smaller frequency region in which the bottom of
the spectrum moves up in energy while the top of the spectrum moves down in energy.
We found that the spectrum is a much more sensitive quantity than the minimum energy of
the equilibrium configuration as regards seeing signatures of the structural transitions in the
system.
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